
Photos placed in horizontal position

with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energyôs National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Verification and Testing Infrastructure and Demonstrations

Irina Tezaur1, Hui Wan2, Andreas Wilke3, Dick Easter2, Jian Sun2, Jason Sarich3,
Kai Zhang2, Luke van Roekel4, LeAnn Conlon4, Jamil Gafur4, Rachel Scanza2,

Lance Rayborn2, Richard Easter2, Vince Larson5

1 SNL, 2 PNNL, 3 ANL, 4 LANL, 5 U Wisconsin

E3SM All-Hands Meeting November 19-21, 2019

SAND2019-13937C

SandiaNationalLaboratoriesis a multi-missionlaboratorymanagedand operatedby NationalTechnologyand EngineeringSolutionsof Sandia,LLC., a wholly
ownedsubsidiaryof HoneywellInternational,Inc., for the U.S. Departmentof9ƴŜǊƎȅΩǎNationalNuclearSecurityAdministrationundercontractDE-NA0003525.

Motivation
This talk is on the tools/workflow created under the CMDV-SM verification

subtask, which aims to create/enable a culture of testing/verification in the E3SM.

ÅPurpose of verification: instill confidencein numerical simulations

üDemonstrate that simulations represent the intended mathematical
model rather than numerical artifacts or coding bugs

üTest against analyticor trusted solutions

üConfirm convergenceof algorithms at theoretical rates

üDetect changes over time (regression)

ÅStatus quo in (much of) E3SM

üVerification & validation not sufficiently distinguished

üMostly focus on validation (matching observations)

üMost developers do some verification

üUsually limited coverage and not formalized

üUsually not isolated or localized ςalways case-based

üNot preserved to re-confirm correctness after modifications

Our efforts under CMDV-SM

ÅWork with model developers to define/formulate appropriate
verification (unit and unit-like) tests for their models

ÅCreate workflow andcorresponding infrastructure for
performing verification and presenting verification results

ücmdv-test-runner: python-based tool for running
verification tests.

ücron/Jenkins: tools for automating running of tests
nightly, weekly, etc.

üCDash: web-based software server for displaying/storing
testing results.

üJupyter(notebooks): tool for writing documentation for
verification tests and post-processing results.

ÅCreate concrete demonstrations of the above testing/
documentation infrastructureon MAM and CLUBB, Ocean
Mixing, etc.

Verification test formulation
ÅFormulating a verification test can present a number of challenges:

üRequires interest/involvement from component developers.

üRequires knowledge of what is in the code.

üRequires understanding of mathematical concepts, e.g. convergence.

Verification test formulation

Å Ideally tests would be written as code is being developed(e.g., SCREAM)

ÅFormulating a verification test can present a number of challenges:

üRequires interest/involvement from component developers.

üRequires knowledge of what is in the code.

üRequires understanding of mathematical concepts, e.g. convergence.

Verification test formulation

Å Ideally tests would be written as code is being developed(e.g., SCREAM)

Å Tests should be small (subroutine, kernel, small set of kernels).

ÅFormulating a verification test can present a number of challenges:

üRequires interest/involvement from component developers.

üRequires knowledge of what is in the code.

üRequires understanding of mathematical concepts, e.g. convergence.

Verification test formulation

Å Ideally tests would be written as code is being developed(e.g., SCREAM)

Å Tests should be small (subroutine, kernel, small set of kernels).

ÅExamples of what IS a verification test:

ü Check mathematical properties (convergence rate, divergence free,
conservation of mass, etc.), compare to theory.

ÅFormulating a verification test can present a number of challenges:

üRequires interest/involvement from component developers.

üRequires knowledge of what is in the code.

üRequires understanding of mathematical concepts, e.g. convergence.

Verification test formulation

Å Ideally tests would be written as code is being developed(e.g., SCREAM)

Å Tests should be small (subroutine, kernel, small set of kernels).

ÅExamples of what IS a verification test:

ü Check mathematical properties (convergence rate, divergence free,
conservation of mass, etc.), compare to theory.

ÅExamples of what IS NOT a verification test:

ü Perform a run and compare to observational data (this is validation!).

ü Arbitrary parameter tunings to match expected data/solution.

ÅFormulating a verification test can present a number of challenges:

üRequires interest/involvement from component developers.

üRequires knowledge of what is in the code.

üRequires understanding of mathematical concepts, e.g. convergence.

Verification test formulation

Å Ideally tests would be written as code is being developed(e.g., SCREAM)

Å Tests should be small (subroutine, kernel, small set of kernels).

ÅExamples of what IS a verification test:

ü Check mathematical properties (convergence rate, divergence free,
conservation of mass, etc.), compare to theory.

ÅExamples of what IS NOT a verification test:

ü Perform a run and compare to observational data (this is validation!).

ü Arbitrary parameter tunings to match expected data/solution.

ÅOnce test is formulated, test driver must be created, which can be done
by hand or using available tools, e.g. kgen.

ÅFormulating a verification test can present a number of challenges:

üRequires interest/involvement from component developers.

üRequires knowledge of what is in the code.

üRequires understanding of mathematical concepts, e.g. convergence.

ÅPython-based tool to discover, build, run, post-process verification tests

ü Discovers tests in current directory

ü Compiles and runs tests according to workflow file

ü Reports results

Running the tests: cmdv-test-runner

https://github.com/E3SM-
Project/CMDV-testing/wiki

One step workflow executing one command:
./cmdv-test-runner --test mam_box.verification.test.yaml

Discover

Build

Execute

Post-
process

Documentation and examples
can be found here:

Sample input yamlfile:
mam_box.verification.test.yaml

ü Can be executed within
Docker container.

https://github.com/E3SM-Project/CMDV-testing/wiki

Automation of test execution (cron/Jenkins)
and results archival (CDash)

ÅExecution of tests can be automated using cronor Jenkins.

ÅWe have created cron/Jenkins jobs on NERSC, ANL, SNL machines that run
cmdv-test-runner (self-tests, MAM water uptake tests) nightly and post results
to the ACME_ClimateCDashsite.

ü Future work: extend workflow to automatically run and
post-to-CDashadditional test results.

https://my.cdash.org/index.php?project=ACME_Climate

Automation of test execution (cron/Jenkins)
and results archival (CDash)

https://my.cdash.org/index.php?
project=ACME_Climate

https://my.cdash.org/index.php?project=ACME_Climate

Documentation/post-processing:
Jupyternotebooks
Å Common tool for writing documentationand post-processing/re-generating

verification results.

Å Documentationto new/existing users of various E3SM components and
template for writing verification/unit tests.

Å The following can be embeddedwithin a Jupyternotebook:

ü LaTex
ü Python
ü Matlab
ü Julia
ü Χ

10/18 /18, 10 42 AMNotebook

Page 9 of 14f ile:// /Development /CMDV-Verif icat ion/tests/mam/mam_box_coag/src/Coagulat ion.html

In [6]: # Second plotting example from verification test 2 (MAM time-split vs

RK4)

reload (mam_util)

from ResultReporter import ResultWriter

rw = ResultWriter ("coag_results.log")

conv_rates = numpy. zeros ((10, 12))

Plot the error (comparing dt=225,450,900,1800 to dt=1):

for IC in range (1, 11):

 conv_rates [IC - 1,:] = mam_util . plot_errors_test2 (figure_size , resul

t , IC)

 for i in range (conv_rates . shape [1]):

 test_name = "IC = %d, %s" % (IC , result ["ordered errors"][i])

 if conv_rates [IC - 1, i] == 0.0 :

 # This happens when errors are machine zero

 test_name += ", TINY errors"

 rw . report_test_passed (test_name)

 else :

 # Convergence rate is finite, check that it is sufficientl

y large

 test_name += ", slope = %g" % conv_rates [IC - 1, i]

 rw . report_test (test_name , conv_rates [IC - 1, i] > 0.8)

rw . finished ()

zero: qa(acc)-SOA

zero: qa(ait)-SOA

zero: qa(pca)-SOA

zero: qa(ait)-POM

